The Γ-rand Truth Degree of Fomulas and Approximate Reasoning in Classical Propositional Logic 经典命题逻辑中公式的Γ-随机真度与近似推理
Metrization on MV-Algebras and Its Application in Lukasiewicz Propositional Logic MV代数的度量化研究及其在Lukasiewicz命题逻辑中的应用
Generalized Tautology of Lukasiewicz Interval-valued Propositional Logic System Lukasiewicz区间值命题逻辑的广义重言式
The uniform issue of two-valued propositional logic formulas and logical equivalent formulas is discussed. 探讨二值命题逻辑公式及逻辑等价公式统一性问题。
Symbolic logic is often divided into two branches, propositional logic and predicate logic. 符号逻辑往往分为两个分支,命题逻辑和谓词逻辑。
Research on the Propositional Functor in Propositional Logic of Stoicism 试析斯多葛学派命题逻辑研究中的命题函子理论
The Theory of Approximate Reasoning Based on the Premise Information in Two-valued Propositional Logic 二值命题逻辑中基于前提信息的近似推理理论
The Implication Measurement and Approximate Reasoning in Two-valued Propositional Logic 二值命题逻辑中的蕴涵度量与近似推理
Extension principle of propositional logic 命题逻辑的外延性原理
Topological Characterizations of Properties of Logic Theories in Three-Valued Propositional Logic System L_3 三值命题逻辑系统L3~中逻辑理论性态的拓扑刻画拓扑描绘字,拓扑描述符
D-Stochastic Truth Degree of Formulas Based on Standardized Representation in Propositional Logic 基于标准化表示的命题逻辑公式的D-随机真度
A conditional truth degree of formulas in n-valued propositional logic systems 一种n值逻辑系统中命题的条件真度
In this paper, we obtain the truth degree expression of the pseudo-metric in two-valued propositional logic, which is based on the truth degree. 本文从语构理论入手,在经典二值命题逻辑系统中给出公式的语构真度的概念,从两个不同的角度给出语构真度的等价刻画。
This paper explains the proposition and propositional logic, giving the definitions, forms and usages of negation, conjunction, disjunction, implication and equivalence. 解释命题、命题逻辑和其涉及的否定、合取、析取、蕴涵和等价等定义,同时分析它们的形式和用法。
This paper presented an automated reasoning algorithm for natural deduction system ( NR) of relevance propositional logic. 给出了相干命题逻辑自然推理系统NR的自动证明算法。
Propositional logic in the inference rule can be used to prove that a propositional formula has been expressed as the theorem, but it is not easy to implement mechanization. 命题逻辑中的推理规则可以用来证明一个已经表示成命题公式的定理,但它还不便于机械化实施。
Type of conclusions and classification of theories in two-valued propositional logic 二值命题逻辑理论的结论类型和分类
Discussing about the Completeness Proof of Normal Modal Propositional Logic System 关于正规模态命题逻辑系统的完全性证明
This paper introduces a method for propositional logic calculation. 介绍了命题逻辑演算方法。
In this paper, uncertainty reasoning based on lattice-valued propositional logic LP ( X) is discussed. The uncertainty reasoning rules of FMP and FMT are proved. Those will become the theoretical foundation for reasoning of linguistic logic. 讨论了基于格值命题逻辑系统LP(X)的不确定性推理,证明了FMP和FMT等不确定推理规则,为进一步讨论语言值逻辑推理提供逻辑基础。
It is impossible for a quantitative fuzzy propositional logic to subsume classical propositional logic. 在定量的意义下使模糊命题演算完全包容经典命题逻辑是不可能的。
Furthermore, it presents a creditability problem about theorem proof in propositional logic. 也引申出命题逻辑定理证明的一个可信性问题。
In this paper, we propose a new description method of information processing systems based on propositional logic. 本文针对以上功能,提出了基于命题逻辑的信息处理系统的新的需求描述方法。
Then, the concept of Fuzzy Modal Propositional Logic together with it's operations are proposed. 随后,给出模糊模态命题逻辑的概念,并定义了模糊模态命题运算。
Chapter Two: The concept of truth degrees of formulas in Lukasiewicz n-valued propositional logic is proposed. 第二章在Lukasiewiczn值命题逻辑中引入了公式的真度理论,得到了一个极限定理。
A Model Predictive Control Based on Hybrid Systems Integrating Propositional Logic with System Dynamics 结合了命题逻辑与系统动力学的混合控制
Basic propositional logic is a non-classical logic which is different from classical propositional logic and intuitionistic propositional logic. 基本命题逻辑是不同于经典命题逻辑的命题逻辑,属于非经典逻辑,与它最类似的非经典逻辑是直觉主义命题逻辑。
QBF Formulae is propositional logic formulae with existential or universal quantifiers to every variable in prefix. QBF是一种具有量词前缀的命题逻辑公式,该公式中的变量都是由存在量词或者全称量词限制。
For this type of reasoning, we explore different types of abductive reasoning from three aspects: propositional logic, syllogism and predicate logic. 对于这类推理,我们从命题逻辑、三段论和谓词逻辑等三个方面,区分了不同类型的溯因推理。
Propositional logic is not in the field of knowledge, but its boundaries. 逻辑命题不在知识的范围内,而是它的界限。